568436 - Mathematics

Guide

1-Contents

Question	Item	Objective	Type	Skill
1	0006	ALG.03.08	Multiple-choice answer	Applications
2	0607	ALG.03.04	Multiple-choice answer	Concepts
3	0608	ALG.03.08	Multiple-choice answer	Applications
4	0623	ALG.03.04	Multiple-choice answer	Applications
5	0624	ALG.03.04	Multiple-choice answer	Applications
6	0616	ALG.03.04	Short-constructed answer	Applications
7	0617	ALG.03.08	Short-constructed answer	Applications
8	0622	ALG.03.04	Short-constructed answer	Applications
9	0793	ALG.03	Short-constructed answer	Applications
10	0776	ALG.03	Extended answer	Problem solving
11	0751	ALG.03	Extended answer	Problem solving
12	0803	ALG.03	Extended answer	Problem solving

2- Correction key

1
 C

D

C

B

The maximum height reached by the rocket is 75 metres.

7 The rule of correspondence that defines the parabola is $y=1 / 6(x-8)^{2}-6$
or $\quad x^{2}-16 x-6 y+28=0$
or $\quad y=\frac{1}{6}\left(x^{2}-16 x+28\right)$
or $\quad y=\frac{1}{2} x^{2}-\frac{8}{3} x+\frac{14}{3}$
or any equivalent rule of correspondence.

The maximum height attained by the ball is 48 m .

At the moment the player hits the ball, the distance between the ball and the wall is 6.4 m .

Example of an appropriate method
Rule of the function
x : time in minutes
$f(x)=$ altitude in metres
$f(x)=a(x-h)^{2}+k$
$f(x)=a(x-3)^{2}+10$
$f(8)=0$ then $0=a(8-3)^{2}+10$

$$
0=a(25)+10
$$

$$
\frac{-10}{25}=\mathrm{a}
$$

$$
-0.4=a
$$

$$
f(x)=-0.4(x-3)^{2}+10
$$

y-intercept

$$
f(0)=-0.4(0-3)^{2}+10=6.4
$$

Answer The balcony is located 6.4 m off the ground.

Example of an appropriate solution

Equation of the parabola

According to the table of values, the coordinates of the vertex of the parabola are $S(29,150)$.

$$
\begin{aligned}
y & =a(x-h)^{2}+k \\
y & =a(x-29)^{2}+150 \\
54 & =a(9-29)^{2}+150 \\
-96 & =400 a \\
-0.24 & =a
\end{aligned}
$$

The equation of the parabola is $y=-0.24(x-29)^{2}+150$.

Launching point
If $y=0$, then $0=-0,24(x-29)^{2}+150 \quad$ Hence, $x=4$ and $x=54$
Since the launching point is to the left of the vertex of the parabola, the coordinates of the launching point are $x=4$ and $y=0$.

Position of the rocket when it exploded
If $y=96, \quad$ then $96=-0.24(x-29)^{2}+150$ Hence, $x=14$ or $x=44$

Since the position of the rocket when it exploded is the right of the vertex of the parabola, the coordinates of the position of the rocket when it exploded are $x=44$ and $y=96$.

Position of the fountain
Since the rocket exploded 96 m above the fountain, the coordinates of the position of the fountain are $x=44$ and $y=0$.

Distance between the launching point and the fountain
$44-4=40 m$

Answer The distance between the point from which the rocket was launched and the fountain is 40 m .

Example of an appropriate method

Coordinates of point B

The axis of symmetry of the parabola representing f is $x=3$.

Since the coordinates of A are $A(0,0)$, the coordinates of B are $B(6,0)$.

Rule of g

Since the zeros of function g are 6 and 10 , the equation of the axis of symmetry of the parabola representing g is $x=8$.

The coordinates of the vertex are $\mathrm{h}=8$ and $\mathrm{k}=4$.

$$
\begin{aligned}
g(x) & =a(x-8)^{2}+4 \\
0 & =a(6-8)^{2}+4 \\
0 & =4 a+4 \\
-4 & =4 a \\
-1 & =a \\
g(x) & =-1(x-8)^{2}+4
\end{aligned}
$$

Answer: \quad The rule of the function g is $g(x)=-(x-8)^{2}+4$.

Name : \qquad

Group : \qquad

Date : \qquad

568436 - Mathematics Question Booklet

1 The parabola represented below crosses the x-axis at the points $(-1,0)$ and $(3,0)$ and its vertex is the point $P(1,-4)$.

Among the following equations, which one represents the parabola graphed above?
A) $y=2 x^{2}+2 x-3$
B) $y=x^{2}+2 x-3$
C) $y=x^{2}-2 x-3$
D) $y=-x^{2}-2 x+3$

The graph at the right illustrates a function defined in the interval $[-10,10]$.

For what values of x is $f(x) \geq 0$?

A) $[-10,10]$
B) $[-10,-2] \cup[6,10]$
D) $[-2,6]$

The parabola shown in the Cartesian plane intersects the x-axis at points $(1,0)$ and $(5,0)$ and the y-axis at $(0,5)$.

What is the rule of correspondence of this parabola?

A) $f(x)=x^{2}-x+5$
B) $f(x)=-x^{2}+6 x-5$
C) $f(x)=x^{2}-6 x+5$
D) $\mathrm{f}(x)=-x^{2}+x+5$

An analysis of the value of a share bought for $\$ 2.00$ shows that, during the first 6 months, its value (v) changed according to the following rule:

$$
\mathrm{v}(t)=-\frac{1}{4} t^{2}+2 t+2
$$

where t represents the number of months since the share was purchased.

What was the maximum value of the share during this period?
A) $\quad \$ 4.00$
B) $\$ 5.75$
C) $\quad \$ 6.00$
D) $\quad \$ 12.00$

Given the real function defined by $\mathrm{f}(x)=x^{2}-2 x+1$. How many zeros does this function have?
A) None
C) Two
B) One
D) An infinite number

The trajectory of a miniature rocket is defined by the equation $h(t)=-3 t^{2}+30 t$ where t represents the number of seconds elapsed since launching the rocket and $h(t)$ represents the height of the rocket in metres.

This situation is graphed below.

What is the maximum height reached by this rocket?

An engineer sketched a parabola in the Cartesian plane.

The polynomial function $h(t)=24 t-3 t^{2}$ describes the height $h(t)$ of a ball (in metres) at time t (in seconds).
What is the maximum height attained by the ball?

A tennis player hits a ball against a wall. At the moment the player hits the ball, it is 1 m above the ground. The ball reaches a maximum height of 3 m . On its way down, the ball hits the wall at a point 2.28 m above the ground. The side view of the ball's trajectory is illustrated below.

The rule representing this trajectory is $f(x)=-\frac{1}{8}(x-4)^{2}+3$.

At the moment the player hits the ball, what is the distance between the ball and the wall?

Melanie was playing with a remote-controlled toy airplane. The plane took off from a balcony and landed on the ground 8 minutes later. Three minutes after taking off, the plane reached a maximum altitude of 10 metres. In the graph below, the plane's altitude as a function of time is represented by a portion of a parabola.

How high off the ground is the balcony located?

A rocket was launched during a fireworks show. The side view of the rocket's parabolic trajectory is represented by the following table of values and graph.

x (metres)	y (metres)
9	54
19	126
29	150
39	126

The rocket exploded 96 m above a fountain.
What is the distance between the point from which the rocket was launched and the fountain?

The following graph represents the side view of the path of a dolphin as it performs a trick during a show at an aquarium. This path is composed of portions of two parabolas associated with function f and g respectively.

The scale of the graph is in metres.

The rule $f(x)=\frac{5}{9}(x-3)^{2}-5$ represents the dolphin's path when it is in the water.
When it is out of the water, the dolphin reaches a maximum height of 4 metres. The distance between points A and C is 10 metres.

What is the rule of the function g ?

